Squishier moons are better for life

My more eager readers will have noticed a sudden flurry of submissions to the arXiv since Christmas. I’ll try and bring you up to date with what I’ve been publishing recently, which is hitting a variety of topics.

The first is a return to a favourite area of research for me: exomoon habitability. As you can see from earlier posts, I’ve been looking at this subject for a while now, focusing in particular how an Earthlike object would fare orbiting a giant planet, which in turn orbits a star like our Sun.

I’ve been using a simple, 1D climate model to follow the temperature changes on this Earth copy, and discover what sort of orbital parameters might be needed for it to possess surface liquid water. But we’ve known from the start that these climate models have been overly simple, and in some cases they’ve missed out important physics that might affect our answers.

In our latest work, we took aim at two aspects of the model that we felt were lacking. In the first, we investigated the issue of atmospheric composition. Up until now, we had assumed a fixed composition, but we know that the Earth has adjusted its atmosphere over time. Sometimes, this is due to the presence of life (like the great oxygenation events that are responsible for the good stuff filling your lungs), but other processes play a role.

In fact, we can identify a complete cycle of processes that affect the total amount of carbon dioxide. CO2 is emitted into the atmosphere via volcanic eruptions. It then precipitates into rain, which falls into the sea, and gets incorporated into rocks and seashells on the ocean floor. This ocean floor is eventually sub ducted at a tectonic plate boundary, and returned to the mantle, where the whole cycle begins again.


It’s known as the carbonate-silicate cycle (because the rocks in play are carbonate and silicate rocks). What’s rather clever about this system is that it acts as a thermostat. If the planet starts to warm, then more Co2 rains out of the atmosphere and into the oceans than is expelled by volcanoes, which reduces the amount of Co2 in the atmosphere. As Co2 is a greenhouse gas, getting rid of it allows the planet to cool more easily. If the planet cools, less co2 rains out and is added to by volcanism. A little extra greenhouse gas helps the planet keep its heat. This is why scientists are worried about manmade co2 production, as we’re mucking around with the thermostat, and too much fiddling could break it.

We never considered this process before, so we changed our model to allow the co2 levels of our moon to vary to help keep the temperature warm and stable.

We then turned to the tidal heating of our moon, which until this point was done using a rather simple model. As you may already know, tidal heating is generated by the planet’s gravity stretching and squeezing the moon as it goes around its orbit. Crucially, the amount of heat the planet can generate in the moon depends on the material the moon is made of, as well as what state it’s in. If the heating is intense enough to allow melting, this can reduce the tidal heating, and stop moons from becoming too hot for life.

We found that when we added both effects, the habitable zone for the moon moves further away from the star.  It also gets wider around the planet as well – moons can orbit closer without being roasted, and changing CO2 levels lets the moon stay warm further away from heat sources by boosting its greenhouse effect.

We’re far from the final answer here: one day I hope to be telling you about fully 3D models of exomoon atmospheres.  Even 1D models like ours still need some extra physics, like investigating how changing the spectrum of incoming radiation affects this answer.  But every step is a step forward!


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s